
René Vincent Jansen

Customizing Git with
NetREXX

An introduction with practical examples of
extending Git with NetREXX

27th International Rexx Language Symposium, Tampa 2016

Strong support for non-linear development
Distributed development
Compatibility with existing systems/protocols
Efficient handling of large projects
Cryptographic authentication of history
Toolkit-based design
Pluggable merge strategies
Garbage accumulates unless collected
Periodic explicit object packing

GIT

GIT

Agenda

❖ What is Git - What can it do - some background with practical examples

❖ Git hooks in NETREXX

❖ Git internals exploration in NETREXX

Previously
❖ Earlier, there were version management systems called SCCS, RCS, CVS,

PVCS, Librarian, Endevor, Visual SourceSafe etcetera. Some of these are still
in use.

❖ Some systems are proprietary, closed source systems. Some are quite
expensive. This is not always reflected by the feature-set or the ease of use.

❖ The open source world has mostly moved from CVS to Subversion (SVN)
and from there to Git

❖ Other distributed VCS are: Darcs, Mercurial, SVK, Bazaar and Monotone.

What are the advantages of Git

❖ Distributed

❖ Speed

❖ Easy and fast branching and merging

❖ Other systems allow branching and merging; Git is designed for it

❖ (It is free)

Git history

❖ Linux kernel was maintained in a proprietary system called BitKeeper, which
had a special provision for free-of-charge use for open source projects

❖ The reverse engineering of BitKeepers’ protocol (by Andrew Tridgell, to
provide a free client) lead to a rift with the copyright holders that left Linux
without a version management system overnight.

❖ Linus set himself to the task of providing a version management system. He
names all his software after himself. (That was, presumably, a joke. We are
not sure).

Git design input
❖ Torvald’s experience with large scale distributed maintenance of the Linux kernel,

and his knowledge of file systems performance led to the following characteristics:

❖ Strong support for non-linear development

❖ Distributed development

❖ Compatibility with existing protocols

❖ Efficient handling of large projects

❖ Cryptographic authentication of project history

❖ Toolkit based design - pluggable merging strategies - no compaction unless needed

Start a repository

❖ in any directory, type “git init”

❖ this creates a structure in the .git subdirectory

Git init

❖ the repository data is in the .git
subdirectory

❖ the rest is called working directory

Setting some variables

❖ The first time you use git, it will ask you for some information

❖ It is mainly about your user id and email address

❖ You only have to set this once
❖ git config —global user.name “Rene Vincent Jansen”

❖ git config —global user.email rene.jansen@ing.nl

mailto:rene.jansen@ing.nl

Adding files, committing them
❖ Now you can add files, edit them etc

❖ When it is time to make a snapshot of those, “git add” them
❖ git add mynewfile.txt

❖ After adding them, commit them to the repository

❖ git commit -m “commit message”

❖ the commit message is non-optional

❖ After this, you can always get back to that version of the file

❖ Shortcut: git commit -a -m “automatically commits added files”

Add and commit a file

❖ This commits locally

File Status Lifecycle

An untracked file needs to be added, it can be modified,
and needs to be staged to be committed. Staging also
uses the “git add” command.

Use a remote repository

❖ This starts with “cloning” a repository

❖ For example:
❖ git clone rvjansen@someserver.com:/SourceREP.git

❖ this will put a copy of the repository in a subdirectory named SourceREP

Clone a remote repository

❖ The remote repository is set as origin and
default destination for push and pull

ssh

❖ git operates standard over the ssh protocol

❖ ssh is the secure shell

❖ it is included in Linux, macOS standard, and the windows git-bash
download

❖ it can use other protocols but don’t worry about this now

How to get work into a remote repository

❖ if you have cloned a repository, you can see what its remote origin is
❖ git remote -v

❖ after you have committed locally, push your changes to the remote
❖ git push

❖ if you have pushed them, everybody else can pull them to their local
repository

See what you changed/added/deleted

❖ git status

❖ gives a report what changed, what is staged as part of the commit, and which
files in your working directory are new - you might have forgotten to add
them

See the content of what you changed

❖ git diff

❖ diff will show what you changed but not yet staged

❖ if you want to see what you staged but not yet committed, type
❖ git diff — cached

See status and edits

❖ Everything which is changed

❖ Tells you to “git add” your changes to add
them to the commit

How to pull changes in

❖ After you have once cloned a git repo, you keep pulling in changes by other
people (or yourself, from another machine)

❖ git pull

❖ this merges in changes by other people, even in the same file

❖ pulling does not touch new files or changes you did not commit

❖ if you changed something locally, and did not commit, git asks you to
commit (or stash, more about that later) your changes, so nothing gets lost

See who added/changed what

❖ git log

❖ this will show you all the commits for the repository up to the current pull

❖ you can use gitk or giblet to see things gui-like

git log

❖ There are only two commits in this new
repository

What is a “version”

❖ A version of a file is represented by a commit, it is an MD5 string

❖ Sets of versioned files can be tagged, like “release 1.5a”

❖ Branches are also named

❖ List the tags:
❖ git tag

Tagging

❖ git tag -a v1.4 -m “my version 1.4”

❖ tags can be signed with your private key

❖ you can also tag later, after the commit already took place

❖ tags are not pushed by default to remote repositories

❖ you can run git push origin [tagname]

Pushing a tag

❖ The local tag will now be part of the remote
repository

How to undo things

❖ If you want to discard the changes you made before you staged a file:
❖ git checkout - - changedfile.txt

❖ It will be overwritten and you changes are lost: this is a dangerous command

❖ Much better is to stash the file or make a branch - you will save the content

What is a branch?

❖ Branching means you can work on the same files, but away from the
mainline of development, without disturbing anyone or anything

❖ In many version management systems this involves copying the files

❖ In git, it does not, and is a fairly cheap and efficient operation

❖ This encourages you to branch quickly and often, even in your own
repository when trying out alternatives of the code

❖ Switching between branches is quick

Branching example

❖ Work on a file, let’s say a source file and a copybook

❖ Create a branch for a story you are working on, let’s say a new feature

❖ Do some work in that branch

❖ but now …

There is a production problem …
❖ Halfway through the work on the new story, there is something that needs

fixing in a previous version. There is a persistent deadlock in prod.

❖ You now:

❖ Switch back to the production branch

❖ Create a standby branch to create the fix

❖ After it’s tested, merge the standby branch, and push to production

❖ Switch back to the original new story branch and keep working

Basic Branching

❖ git checkout -b REX-19364

❖ this is shorthand for
❖ git branch REX-19364

❖ git checkout REX-19364

Checkout a new branch

❖ We are on master (by default)

❖ The checkout makes an REX-19364 branch

❖ And moves the working directory to it

Now work on the branch
❖ Edit, edit, commit:

❖ git commit -a -m “fixed several functional issues, not
yet ready”

❖ Now you get the call there is something seriously wrong with the same
program in production:
❖ git checkout master

❖ Now your files are exactly the way before you started working on the new
story

Now commit the almost-ready feature branch

❖ It was nearly finished, but now there is a
production issue

❖ Note that I forgot to “git add” the change

❖ Then added it to the commit with the -a
switch

Checkout the master branch

❖ This rolls back the working directory to the
previous production state

Now make the standby branch
❖ We branch from master, which is production

❖ git checkout -b hotfix-233

❖ We work on the solution, which is adding some commits to fix a deadlock
❖ git commit -a -m “fix for prob-233 add commits to
rexm123”

❖ Then the fixed branch is sent into the automated testing for Connected-T and
after successful functional test (we did not change function, but still) it runs
in Connected-A

Checkout hotfix branch

❖ this branches from master, which is
production

Now add the fix

❖ We need to add a commit

Basic Merging

❖ Now we have tested the fix, we need to merge the standby branch with
master
❖ git checkout master

❖ git merge hotfix-233

❖ git branch -d hotfix-233

Merge and delete the hot fix branch

❖ this was auto-merged without much
ceremony

Phew

❖ Now that we have solved this, let’s go back to work and finish the new
feature story

❖ git checkout -b REX-19364

❖ This will reset your working directory to exactly the state it was before we
got the call about the deadlock

Resume work on the feature branch

❖ This will restore your work on feature
REX-19364 to where you left it before the
hotfix was needed

Merge feature branch into master

❖ when it is ready to be tagged and released

❖ this also merged cleanly

Now push everything to origin

❖ Now every team member can merge these
changes by issuing a “git pull”

Sometimes, there are merging conflicts

❖ Maybe another colleague started working on this, because another manager
called him. You both modified a part of the same source file

❖ This is no big problem, git tells you there is a conflict, and where

❖ This means editing the file that has the difference listed in it, and committing
once more, until the files merge cleanly

Server Side Git

❖ To put a shared repository on a server, you need a bare repository

❖ A bare repository does not have a working directory

❖ git clone —bare name-of-repository

❖ scp -r bare-repository.git userid@server.com:

mailto:userid@server.com

Clone —bare and upload to server

❖ In this example, certificates obviate the
need to specify a password & userid

GIT Hooks in NETREXX Customize GIT Behaviour

GIT Hooks

❖ a hook is what we used to call an exit

❖ in the .git/hooks directory there are various samples

❖ we will focus on the pre-commit exit

❖ this exit gets control when we are committing locally

❖ to have it running, rename pre-commit.sample to pre-commit

Two Examples

❖ We will show 2 examples of a pre-commit exit

❖ One will add locking behaviour to GIT

❖ The second will auto-convert UTF16-BE to UTF8

**
 * class lockHook is a git pre-commit hook. It needs to be called from a hook called pre-commit
 * situated in the .git/hooks subdirectory. Suggested content of this hook is:
 * #!/bin/sh
 * java -cp "lib\NetRexxF.jar;bin" lockHook
 * when this script returns 0, the commit can go through
 * when it returns 1, the commit process is stopped.
 */
options binary nodecimal
import org.netrexx.address.

class lockHook

 properties private static
 fileList = ArrayList()

 method lockHook()
 lockFile = BufferedReader(FileReader("bin/LockedFiles.txt")) -- input file
 loop forever
 line = Rexx lockfile.readLine()
 if line = null then leave
 fileList.add(line)
 end

Lockhook part I

 /**
 * Method main asks git for the changed files for this commit.
 * @param args is a String[]
 */
 method main(args=String[]) static
 l = lockHook()
 /* check names of file to commit */
 say 'Starting lock check commit hook'
 command = ArrayList()
 command.add('git')
 command.add('diff-index')
 command.add('--name-only')
 command.add('--cached')
 command.add('HEAD')
 os = OSProcess()
 a = os.outtrap(command)
 i = a.iterator()
 loop while i.hasNext()
 filename = Rexx i.next()
 say 'lockHook checked:' filename '\-'
 if l.checkIfLocked(filename) then
 do
 say 'locked. Commit aborted.'
 exit 1
 end
 else
 do
 say 'not locked.'
 end
 end -- loop while i

 exit 0

 method checkIfLocked(filename)
 if fileList.contains(filename) then return 1
 else return 0

Lockhook part II

**
* class checkUTF is a git pre-commit hook. It needs to be called from a hook called pre-commit
* situated in the .git/hooks subdirectory. Suggested content of this hook is:
* #!/bin/sh
* java -cp "lib\NetRexxF.jar;bin" checkUTF
* when this script returns 0, the commit can go through
* when it returns 1, the commit process is stopped.
* This class is designed to always let the commit go through,
* but keep UTF-16LE files out of the repository.
* It is, for the moment, dependent on class OSProcess.
 */
class checkUTF
 /**
 * Method main asks git for the changed files for this commit. For each file:
 * it checks if the file is UTF-16LE, by calling method testByteOrderMark
 * if UTF-16LE, it calls convertToUTF8
 * @param args is a String[]
 */
 method main(args=String[]) static
 /* check characters sets of files to commit */
 command = ArrayList()
 command.add('git')
 command.add('diff-index')
 command.add('--name-only')
 command.add('--cached')
 command.add('HEAD')
 os = OSProcess()
 a = os.outtrap(command)
 i = a.iterator()
 loop while i.hasNext()
 filename = Rexx i.next()
 encoding = testByteOrderMark(filename)
 if encoding = null then do
 exit 0
 end
 if encoding = 'UTF-16LE' then do
 say filename 'is' encoding ' - converting to UTF-8'
 convertToUTF8(filename)
 end
 end
 exit 0

checkUTF I

 /**
 * Method testByteOrderMark tests for a filename supplied as argument if
 * the first two bytes are FF FE, the BOM for UTF-16LE
 * It returns the result to the calling method
 * @param filename is a Rexx
 */
 method testByteOrderMark(filename) static signals IOException
 /* check for UTF16LE BOM (byte-order-mark) FF FE */
 do
 source = DataInputStream(FileInputStream(filename))
 ch1 = Rexx source.readUnsignedByte() -- read one byte
 ch2 = Rexx source.readUnsignedByte() -- read one byte
 source.close()
 if ch1.d2x(2) = 'FF' & ch2.d2x(2) = 'FE' then do
 return 'UTF-16LE'
 end
 return 'not UTF-16LE'
 catch FileNotFoundException
 say 'file' filename 'not found. continuing with commit.'
 return null
 end

 /**
 * Method convertToUTF8 takes a filename as parameter and shells iconv to convert to UTF-8
 * After this, the resulting UTFF-8 file is renamed to the original name
 * We are not using JVM's rename, because this intermittedly fails on windows
 * Because of this, we shell a mv command. This is available due to the git bash shell we run.
 * The file is re-added to the git commit, so that the repository is UTF-8 clean.
 * @param filename is a Rexx
 */
 method convertToUTF8(filename) static signals IOException
 newfilename = filename||'.utf8'
 outFile = FileWriter(newfilename)
 dest = PrintWriter(outFile)
 command = ArrayList()
 command.add('iconv')
 command.add('-f')
 command.add('UTF-16LE')
 command.add('-t')

checkUTF II

 command.add('UTF-8')
 command.add(filename.toString())
 os = OSProcess()
 a = os.outtrap(command)
 i = a.iterator()
 loop while i.hasNext()
 line = Rexx i.next()
 dest.println(line)
 end
 dest.close()

 command = ArrayList()
 command.add('mv')
 command.add(newfilename.toString())
 command.add(filename.toString())
 os = OSProcess()
 a = os.outtrap(command)
 i = a.iterator()
 loop while i.hasNext()
 line = Rexx i.next()
 dest.println(line)
 end

 -- and add it again to not commit the UTF-16LE version
 command = ArrayList()
 command.add('git')
 command.add('add')
 command.add(filename.toString())
 os = OSProcess()
 a = os.outtrap(command)
 i = a.iterator()
 loop while i.hasNext()
 line = Rexx i.next()
 dest.println(line)
 end

checkUTF III

Explore and Control

Git Internals in NETREXX using jGit

So how does it do it?

JGIT FOR NETREXX INTERFACING

JGIT

▸ Git has implementations in C(++) and Java

▸ JGit is the JVM version that we used

▸ Build it from source; only Java SDK needed

▸ Maven build, dependencies loaded

▸ Pre-built integrated .sh script no good for z/OS

▸ need jgit-cli.jar

THERE IS MORE THAN UTF-8

SOME ASSEMBLY REQUIRED

▸ Java is UFT16 internally - you would think it will all work

▸ currently some ‘optimization’ has wrong assumptions

▸ and more specific, assumes the world is ASCII (ISO8859-1)

▸ This is mostly centered around the display of git diff

▸ Git diff and merge work fine

▸ Git hooks work fine

GIT & NETREXX

RETRIEVE A FILE FROM A GIT REPOSITORY IN AN APPLICATION

 /**
 * Method retrieveFileFromSHA returns a file by its SHA
 * @param oid is a ObjectId which must be initialized with the SHA
 * @param fileName represents the output filename
 */
 method retrieveFileFromSHA(oid=ObjectId, fileName) protect
 init()
 objectReader_ = this.repository_.newObjectReader()
 objectLoader_ = objectReader_.open(oid)

 fops = BufferedOutputStream(FileOutputStream(fileName))
 do
 objectLoader_.copyTo(fops)
 catch MissingObjectException
 say 'missing object'
 catch IOException
 say 'error in i/o'
 end
 fops.close()
 close()

GIT & NETREXX

USE THE PLATFORM DIFF (WHICH C-GIT ALSO SOMETIMES DOES)
 /**
 * Method diff calls the native diff utility to compare two files
 * which might be EBCDIC encoded and still will be treated as text
 * @param sha1 is a ObjectId
 * @param sha2 is a ObjectId
 */
 method diff(sha1=ObjectId,sha2=ObjectId) protect
 retrieveFileFromSHA(sha1,'tmpf1')
 retrieveFileFromSHA(sha2,'tmpf2')

 command = ArrayList()
 command.add('diff')
 command.add('tmpf1')
 command.add('tmpf2')
 os = OSProcess()
 a = os.outtrap(command)
 i = a.iterator()
 loop while i.hasNext()
 line = Rexx i.next()
 say line
 if line.pos('is binary') >0 then cmp(sha1,sha2)
 end

GIT & NETREXX

USE THE NATIVE CMP FOR BINARY FILES (WHICH GIT DOESN’T DO)

 /**
 * Method cmp compares two binary files
 * @param sha1 is a ObjectId
 * @param sha2 is a ObjectId
 */
 method cmp(sha1=ObjectId,sha2=ObjectId) protect
 retrieveFileFromSHA(sha1,'tmpf1')
 retrieveFileFromSHA(sha2,'tmpf2')

 command = ArrayList()
 command.add('cmp')
 command.add('tmpf1')
 command.add('tmpf2')
 os = OSProcess()
 a = os.outtrap(command)
 i = a.iterator()
 loop while i.hasNext()
 line = Rexx i.next()
 say line
 end

GIT & NETREXX

COPY HFS FILES FROM/TO SAM (QSAM OR PDS(/E))

 /**
 * Method copy shells the cp command to copy a file
 * one of those might be QSAM, following the z/OS convention
 * example: copy('//''M06F947.CHARS.TEST''','bla.tst')
 * Does not use the repository, but enables to add files to the workspace
 * @param fileNameTo is a Rexx
 */
 method copy(fileNameFrom,fileNameTo) protect
 command = ArrayList()
 command.add(String('cp'))
 command.add(String(fileNameFrom))
 command.add(String(fileNameTo))
 os = OSProcess()
 a = os.outtrap(command)
 i = a.iterator()
 loop while i.hasNext()
 line = Rexx i.next()
 say line
 end

GIT & NETREXX

WALKING COMMITS /**
 * Method commitWalk ...
 * @param head is a ObjectId
 * @return TreeMap containing ...
 */
 method commitWalk(head=ObjectId,quiet) returns TreeMap protect
 init()
 this.filesMap.clear()
 rev = RevCommit
 do
 walk = RevWalk(this.repository_)
 commit = walk.parseCommit(head)
 walk.markStart(commit)
 count = int 0
 loop forever
 rev = walk.next()
 if rev = null then leave
 say '-'.copies(40)
 say rev
 say 'Commit Time :' Date(long rev.getCommitTime() * 1000)
 say 'Author ID :' rev.getAuthorIdent
 say 'Committer ID :' rev.getCommitterIdent
 say 'Commit Message:' rev.getFullMessage()

 say 'tree: (Files in Commit Object)'
 treeWalk(rev.getTree(),quiet)
 say
 count = count + 1
 end
 say count "commits in this branch"
 walk.dispose()
 close()
end
return this.filesMap

GIT & NETREXX

WALK A FILES TREE
 /**
 * Method treeWalk ...
 * @param treeId is a ObjectId
 */
 method treeWalk(treeId=ObjectId,quiet=0) protect
 init()
 count = 0
 treeWalk_ = TreeWalk(this.repository_)
 treeWalk_.addTree(treeId)
 treeWalk_.setRecursive(1)
 treeWalk_.setPostOrderTraversal(1)
 loop while treeWalk_.next()
 fileMode = Integer.parseInt(treeWalk_.getFileMode(0).toString())
 objectId_ = treeWalk_.getObjectId(0).name()
 path = treeWalk_.getPathString()
 count = count + 1
 if \quiet then say objectId_ (Rexx fileMode).format(6) path
 if this.filesMap.get(path) = null then
 do
 this.filesMap.put(path,objectId_)
 end
 else
 do
 objids = this.filesMap.get(path)
 objids = objids Rexx(objectId_.toString())
 this.filesMap.put(path,objids)
 end
 end
 if \quiet then say count "files in commit tree"
 close()

Question?

❖ Thanks for your attention!

❖ rvjansen@xs4all.nl

